|
|
Line 1: |
Line 1: |
| + | ==Images== |
| * [[Media:Intelligent-Digital-Mesh.jpg]] | | * [[Media:Intelligent-Digital-Mesh.jpg]] |
| * [[Media:Infographic-Gartner.jpg]] | | * [[Media:Infographic-Gartner.jpg]] |
Line 6: |
Line 7: |
| * [[Media:Topics-of-interest.jpg]] | | * [[Media:Topics-of-interest.jpg]] |
| | | |
| + | ==Main Page== |
| <html> | | <html> |
| <section class="section tot"> <!-- THE FIRST ROW --> | | <section class="section tot"> <!-- THE FIRST ROW --> |
Line 80: |
Line 82: |
| </html> | | </html> |
| | | |
| + | ==Topics of Interest== |
| <html> | | <html> |
− | <h1>Topics of Interest</h1>
| |
| <section class="section tot"> | | <section class="section tot"> |
| <div class="container"> | | <div class="container"> |
Line 180: |
Line 182: |
| </div> | | </div> |
| <div class="column"> | | <div class="column"> |
− | </div>
| |
− | </div>
| |
− | </div>
| |
− | </div>
| |
− | </section>
| |
− |
| |
− | <section class="section tot">
| |
− | <div class="container">
| |
− | <div class="content">
| |
− | <div class="columns">
| |
− | <div class="column">
| |
− | </div>
| |
− | </div>
| |
− | </div>
| |
− | </div>
| |
− | </section>
| |
− |
| |
− | <section class="section tot">
| |
− | <div class="container">
| |
− | <div class="content">
| |
− | <div class="columns">
| |
− | <div class="column">
| |
− | </div>
| |
− | </div>
| |
− | </div>
| |
− | </div>
| |
− | </section>
| |
− | </html>
| |
− |
| |
− | <html>
| |
− | <section class="section tot">
| |
− | <div class="container">
| |
− | <div class="content">
| |
− | <div class="columns">
| |
− | <div class="column">
| |
− | </div>
| |
− | <div class="column is-4">
| |
− | <div class="card">
| |
− | <header class="card-header">
| |
− | <p class="card-header-title">Component</p>
| |
− | <a href="#" class="card-header-icon" aria-label="more options">
| |
− | <span class="icon"><i class="fas fa-angle-down" aria-hidden="true"></i></span>
| |
− | </a>
| |
− | </header>
| |
− | <div class="card-content">
| |
− | <p class="title">“There are two hard things in computer science: cache invalidation, naming things, and off-by-one errors.”</p>
| |
− | <p class="subtitle">Jeff Atwood</p>
| |
− | </div>
| |
− | <footer class="card-footer">
| |
− | <p class="card-footer-item">
| |
− | <span>
| |
− | View on <a href="https://twitter.com/codinghorror/status/506010907021828096">Twitter</a>
| |
− | </span>
| |
− | </p>
| |
− | <p class="card-footer-item">
| |
− | <span>
| |
− | Share on <a href="#">Facebook</a>
| |
− | </span>
| |
− | </p>
| |
− | </footer>
| |
− | </div>
| |
| </div> | | </div> |
| </div> | | </div> |
Revision as of 18:18, 24 February 2018
Images
Main Page
The 5thInternational Management Information Systems Conference (IMISC 2018) will take place in Ankara, Turkey, from October 17-19, 2018.
MORE →
The Intelligent Digital Mesh, “an entwining of people, devices, content and services”, is this year’s cross-cutting theme.
MORE →
IMISC 2018 will explore the convergence of business and society in a digital world.
MORE →
Topics of Interest
Concepts, models, methods, tools, and techniques in Enterprise and IS Engineering
- Business process management
- Business process modeling, analysis, and engineering
- Requirements engineering
- Enterprise architecture and frameworks
- Model-driven engineering
- Aspect-oriented analysis and modeling
- Domain-specific languages and tools
- Blockchain technology
- Advanced database systems
- Reuse
- Testing and validation
Architectures and quality aspects of information systems
- Service-oriented IS
- Multi-agent IS
- Process-aware IS
- Cloud-based IS
- Multi-platform IS
- Cyber-physical systems
- Internet of things
- Privacy, trust and security in information systems
- Quality of services
- Integration and interoperability
- Distributed, mobile and open architecture
Domain-specific information systems
- GIS
- Medical IS
- Legal IS
- Educational IS
Cyber-Social Systems
- Social computing technologies
- Smart city
- Smart government
Big data and its analytics
- Big data applications
- Big data integrity
- Big data processing
- Security and privacy in the era of data science and big data
- Big data analysis and semantics
- Data visualisation
Cognitive Computing
- Cognitive computing techniques using artificial intelligence, sophisticated pattern and speech recognition, and natural language processing
- Machine learning
- Neural networks
- Big data and cognition
- Big data infrastructure for cognition
Knowledge, ontologies, data and knowledge management
- Knowledge representation
- Ontology engineering
- Enterprise ontology
- Semantic web
- Domain ontologies
- Domain analysis and modeling
- Education and training
- Applications and case studies
Empty Structure
Calls
Help Bar