Difference between revisions of "Track: BIG"

Line 5: Line 5:
 
         <div class="content">
 
         <div class="content">
 
           <div class="columns">
 
           <div class="columns">
             <div class="column is-8">
+
             <div class="column is-7">
 
               <p class="title is-3">Track</p>
 
               <p class="title is-3">Track</p>
 
               <p class="subtitle is-4">Big Data and Data Analytics</p><br>
 
               <p class="subtitle is-4">Big Data and Data Analytics</p><br>
 
               <p class="title is-3">Track Chair</p>
 
               <p class="title is-3">Track Chair</p>
 
               <p class="subtitle is-4">Dr. A. Hızıroğlu<br><span class="has-text-weight-light is-size-5">Bakırçay University</span></p>
 
               <p class="subtitle is-4">Dr. A. Hızıroğlu<br><span class="has-text-weight-light is-size-5">Bakırçay University</span></p>
 +
          </div>
 +
            <div class="column is-1">
 +
            </div>
 +
            <div class="column is-4">
 +
            </div>
 +
        </div>
 +
      </div>
 +
    </section>
 +
    <section class="section tot">
 +
      <div class="container">
 +
        <div class="content">
 +
          <div class="columns">
 +
            <div class="column is-7">
 
               <p class="title is-3">Call for Papers</p>
 
               <p class="title is-3">Call for Papers</p>
 
               <p>The concept of big data and analytics in different application domains have been of significant importance in the last decade. <strong>Big Data and Data Analytics</strong> track aims to contribute to the area in a multidisciplinary context covering the research perspectives including conceptual and methodological, technological, managerial and economic, as well as application domains. Towards this aim, topics from both operational and managerial aspects of analytics and big data are covered. From the operational aspect problems, issues, and challenges as well as pertaining technological solutions/models for the topics such as data crawling, data diversity and volume, data quality, data privacy and security, data preprocessing and mining of data; from the managerial aspect considerations including cost, investment, value, impact, implementation and innovation are encouraged to apply to the track.</p>
 
               <p>The concept of big data and analytics in different application domains have been of significant importance in the last decade. <strong>Big Data and Data Analytics</strong> track aims to contribute to the area in a multidisciplinary context covering the research perspectives including conceptual and methodological, technological, managerial and economic, as well as application domains. Towards this aim, topics from both operational and managerial aspects of analytics and big data are covered. From the operational aspect problems, issues, and challenges as well as pertaining technological solutions/models for the topics such as data crawling, data diversity and volume, data quality, data privacy and security, data preprocessing and mining of data; from the managerial aspect considerations including cost, investment, value, impact, implementation and innovation are encouraged to apply to the track.</p>
 
               <p>Dr. Abdülkadir Hızıroğlu, Bakırçay University</p>
 
               <p>Dr. Abdülkadir Hızıroğlu, Bakırçay University</p>
 
               <p><span class="icon"><i class="fa fa-envelope"></i></span> <a href="mailto:hiziroglukadir@gmail.com"><strong>hiziroglukadir@gmail.com</strong></a></p>
 
               <p><span class="icon"><i class="fa fa-envelope"></i></span> <a href="mailto:hiziroglukadir@gmail.com"><strong>hiziroglukadir@gmail.com</strong></a></p>
 +
<br>
 +
              <p class="title is-3"><strong>Biography of the Chair</strong></p>
 +
              <p></p>
 +
 +
            </div>
 +
            <div class="column is-1">
 
             </div>
 
             </div>
             <div class="column">
+
             <div class="column is-4">
<!--
 
              <p>
 
                <figure class="image" style="margin: 0;">
 
                  <img src="http://2018.imisc.net/images/2/29/Track.jpg" alt="Image">
 
                </figure>
 
              </p>
 
-->
 
 
               <p class="subtitle is-5"><strong>Key Topics</strong></p>
 
               <p class="subtitle is-5"><strong>Key Topics</strong></p>
 
               <p>Within the context, papers based on theoretical and empirical/behavioral researches are welcomed to cover any of the following topics (not limited to):</p>
 
               <p>Within the context, papers based on theoretical and empirical/behavioral researches are welcomed to cover any of the following topics (not limited to):</p>

Revision as of 23:08, 25 May 2018

Track

Big Data and Data Analytics


Track Chair

Dr. A. Hızıroğlu
Bakırçay University

Call for Papers

The concept of big data and analytics in different application domains have been of significant importance in the last decade. Big Data and Data Analytics track aims to contribute to the area in a multidisciplinary context covering the research perspectives including conceptual and methodological, technological, managerial and economic, as well as application domains. Towards this aim, topics from both operational and managerial aspects of analytics and big data are covered. From the operational aspect problems, issues, and challenges as well as pertaining technological solutions/models for the topics such as data crawling, data diversity and volume, data quality, data privacy and security, data preprocessing and mining of data; from the managerial aspect considerations including cost, investment, value, impact, implementation and innovation are encouraged to apply to the track.

Dr. Abdülkadir Hızıroğlu, Bakırçay University

hiziroglukadir@gmail.com


Biography of the Chair

Key Topics

Within the context, papers based on theoretical and empirical/behavioral researches are welcomed to cover any of the following topics (not limited to):

  • Managerial and Organizational Aspects of Analytics
  • Conceptual and Methodological Issues in Analytics
  • Business Strategy, Innovation and Analytics
  • Value, Impact and Analytics
  • Investing in Analytics
  • Managing and Operating Big Data
  • Big Data Processing and Quality
  • Big Data Governance, Privacy and Security
  • Big Data and Data Science
  • Big Data and Cloud Technology
  • Big Data and Soft Computing
  • Big Data and Machine Learning
  • Modeling, Optimization and Analytics
  • Simulation and Visual Analytics
  • Real Time Analytics
  • Social Media Analytics
  • Analytics in Service Operations
  • Analytics in Manufacturing Industries
  • Analytics in Public Administration Domain
  • Analytics for Societal Problems