Difference between revisions of "Track: DMM"

(Created page with "<html> <!-- <div class="langx is-pulled-right"><a class="button is-small" href="/index.php?title=Konferansın_Yeri">Turkish</a></div> --> <section class="section tot">...")
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<html>
 
<html>
<!-- <div class="langx is-pulled-right"><a class="button is-small" href="/index.php?title=Konferansın_Yeri">Turkish</a></div> -->
 
 
     <section class="section tot">
 
     <section class="section tot">
 
       <div class="container">
 
       <div class="container">
 
         <div class="content">
 
         <div class="content">
 
           <div class="columns">
 
           <div class="columns">
             <div class="column is-7">
+
             <div class="column is-three-fifths is-offset-one-fifth">
               <p class="title is-3">Track</p>
+
               <p class="is-small is-uppercase has-text-weight-bold" style="color: #e0470d;">Track</p>
               <p class="subtitle is-4">Data Mining and Machine/Deep Learning</p><br>
+
               <p class="title is-3">Data Mining and Machine/Deep Learning</p>
               <p class="title is-3">Track Chair</p>
+
               <p class="is-small is-uppercase has-text-weight-bold" style="color: #e0470d;">Track Chair</p>
               <p class="subtitle is-4">Dr. H. Dağ<br><span class="has-text-weight-light is-size-5">Kadir Has University</span></p>
+
               <p class="subtitle is-5">Prof. Dr. Hasan Dağ, Kadir Has University</p>
 +
            </div>
 
           </div>
 
           </div>
             <div class="column is-1">
+
  <div class="is-divider" data-content="Introduction"></div>
 +
          <div class="columns">
 +
             <div class="column is-three-fifths is-offset-one-fifth">
 +
              <p>Data science expresses that previous data processing applications are not sufficient to process larger and more complex data sets. The relatively recent concepts of data mining, machine learning, and deep learning offer a new set of techniques and methods. Today, researchers and companies are dealing with and experimenting with various methods of deriving value, such as machine learning, data mining, artificial intelligence, and deep learning. Data Mining and Machine / Deep Learning track aims to contribute to fields that are related to analytics of data that based on different data types. New approaches, applications, models or methods related to the topic of this track.</p>
 
             </div>
 
             </div>
            <div class="column is-4">
+
          </div>
              <p class="subtitle is-5"><strong>Language of the Track</strong></p>
+
  <div class="is-divider" data-content="Biography of the Chair"></div>
              <p>English</p>
+
          <div class="columns">
              <p>&nbsp;</p>
+
            <div class="column is-three-fifths is-offset-one-fifth">
              <p><a class="button is-link is-medium" href="http://2018.imisc.net/oc" target="_blank""><strong><span class="icon"><i class="fa fa-send"></i></span> &nbsp;&nbsp;Submit your paper</strong></a></p>
+
               <p>Prof. Dr. Hasan Dağ obtained his bachelor degree in electrical engineering from Istanbul Technical University, Istanbul, Turkey and obtained both his master and PhD degrees both in University of Wisconsin-Madison in electrical and Computer Engineering. His area of interest in general is computational science, data science and smart grid. His recent research areas are Data Science, Big Data, Cyber Security, and their application to Smart Grid. He holds the directorate position of research resources, while at the same time holding the position of the head of Management Information System at Kadir Has University, Istanbul, Turkey. He has also been appointed the directorate position of Research Center for Cyber Security and Critical Infrastructures.</p>
               <p><a href="/index.php?title=Conference_Tracks"><strong>List of Confirmed Track Proposals</strong></a></p>
 
 
             </div>
 
             </div>
        </div>
+
          </div>
      </div>
+
  <div class="is-divider" data-content="Papers"></div>
    </section>
 
    <section class="section tot">
 
      <div class="container">
 
        <div class="content">
 
 
           <div class="columns">
 
           <div class="columns">
             <div class="column is-7">
+
             <div class="column is-three-fifths is-offset-one-fifth">
               <p class="title is-3">Call for Papers</p>
+
               <p class="is-small has-text-grey">Unsorted</p>
               <p><strong>Data science</strong> expresses that previous data processing applications are not sufficient to process larger and more complex data sets. The relatively recent concepts of data mining, machine learning, and deep learning offer a new set of techniques and methods. Today, researchers and companies are dealing with and experimenting with various methods of deriving value, such as machine learning, data mining, artificial intelligence, and deep learning. Data Mining and Machine / Deep Learning track aims to contribute to fields that are related to analytics of data that based on different data types. New approaches, applications, models or methods related to the topic of this track are encouraged to apply to the track.</p>
+
<!-- 17 -->
               <p>Dr. Hasan Dağ, Kadir Has University</p>
+
               <p><span class="icon" style="color: #e0470d;"><i class="fa fa-file-text-o"></i></span> Evaluation of Call Center Efficiency Using Text Mining Approach</p>
               <p><span class="icon"><i class="fa fa-envelope"></i></span> <a href="mailto:hasan.dag@khas.edu.tr"><strong>hasan.dag@khas.edu.tr</strong></a></p>
+
               <p class="is-small">Eda Üzüm, Boğaziçi University<br>Seren Başaran, Boğaziçi University<br>Sona Mardikyan, Boğaziçi University</p>
<br>
+
<!-- 37 -->
               <p class="title is-3"><strong>Biography of the Chair</strong></p>
+
               <p><span class="icon" style="color: #e0470d;"><i class="fa fa-file-text-o"></i></span> Veri Madenciliği Üzerine Endüstriyel Bir Durum Çalışması</p>
               <p><strong>Dr. Dağ</strong> obtained his bachelor degree in electrical engineering from Istanbul Technical University, Istanbul, Turkey and obtained both his master and PhD degrees both in University of Wisconsin-Madison in electrical and Computer Engineering. His area of interest in general is computational science, data science and smart grid. His recent research areas are Data Science, Big Data, Cyber Security, and their application to Smart Grid. He holds the directorate position of research resources, while at the same time holding the position of the head of Management Information System at Kadir Has University, Istanbul, Turkey. He has also been appointed the directorate position of Research Center for Cyber Security and Critical Infrastructures.</p>
+
              <p class="is-small">Buse Türkoğlu, Norm Civata<br>Murat Komesli, Yaşar University<br>Mehmet Süleyman Ünlütürk, Yaşar University</p>
 
+
<!-- 39 -->
            </div>
+
               <p><span class="icon" style="color: #e0470d;"><i class="fa fa-file-text-o"></i></span> Balıkçılık Endüstrisinde Kullanılan Büyüme Modellerinde Geleneksel Yaklaşımlar ile Yapay Sinir Ağlarının Yaklaşımlarının Karşılaştırılması</p>
            <div class="column is-1">
+
               <p class="is-small">Recep Benzer, National Defense University<br>Semra Benzer, Gazi University</p>
            </div>
+
<!-- 42 -->
            <div class="column is-4">
+
              <p><span class="icon" style="color: #e0470d;"><i class="fa fa-file-text-o"></i></span> Integration of the Google Analytics tool into the data pre-processing layer for WEB Usage Mining: A case study</p>
<!--             <p>
+
              <p class="is-small">Şükrü Can Şayan, Gazi University<br>Tahsin Çetinyokuş, Gazi University</p>
                <figure class="image" style="margin: 0;">
+
<!-- 61 -->
                  <img src="http://2018.imisc.net/images/2/29/Track.jpg" alt="Image">
+
              <p><span class="icon" style="color: #e0470d;"><i class="fa fa-file-text-o"></i></span> Siğil Tedavisinde Kullanılan Immunotherapy Yönteminin Uygunluğunun Bayes Yöntemi ile Tespiti</p>
                </figure>
+
              <p class="is-small">Sümeyye Çelik, Burdur Mehmet Akif Ersoy University<br>Melike Şişeci Çeşmeli, Burdur Mehmet Akif Ersoy University<br>İhsan Pençe, Burdur Mehmet Akif Ersoy University<br>Adnan Kalkan, Burdur Mehmet Akif Ersoy University</p>
              </p> -->
+
<!-- 63 -->
               <p class="subtitle is-5"><strong>Key Topics</strong></p>
+
               <p><span class="icon" style="color: #e0470d;"><i class="fa fa-file-text-o"></i></span> Predicting Diffusion Reach Probabilities via Representation Learning on Social Networks</p>
               <p>We welcome papers related to the following topics (but not limited to):</p>
+
               <p class="is-small">Furkan Gürsoy, Boğaziçi University<br>Ahmet Onur Durahim, Boğaziçi University</p>
               <ul>
+
<!-- 69 -->
                <li>Demand forecasting</li>
+
               <p><span class="icon" style="color: #e0470d;"><i class="fa fa-file-text-o"></i></span> Finding a Model that Provides High Profits with Web Usage Mining: A Case Study</p>
                <li>Process optimization</li>
+
              <p class="is-small">Şükrü Can Şayan, Gazi University<br>Tahsin Çetinyokuş, Gazi University</p>
                <li>Predictive maintenance or condition monitoring</li>
+
<!-- 79 -->
                <li>Recommendation engines</li>
+
              <p><span class="icon" style="color: #e0470d;"><i class="fa fa-file-text-o"></i></span> Derin Öğrenme ile Görüntü Kümeleme</p>
                <li>Market segmentation and targeting</li>
+
              <p class="is-small">Ömer Faruk Akmeşe, Hitit University</p>
                <li>Disease identification and risk stratification</li>
+
<!-- 107 -->
                <li>Dynamic pricing</li>
+
              <p><span class="icon" style="color: #e0470d;"><i class="fa fa-file-text-o"></i></span> K-Means vs. Fuzzy C-Means: A Comparative Analysis of Two Popular Clustering Techniques on the Featured Mobile Applications Benchmark</p>
                <li>Social media-consumer feedback and interaction analysis</li>
+
              <p class="is-small">Tuğrul Cabir Hakyemez, Sakarya University<br>Aysun Bozanta, Boğaziçi University<br>Mustafa Coşkun, Boğaziçi University</p>
                <li>Traffic patterns and congestion management</li>
+
<!-- 116 -->
                <li>Power usage analytics</li>
+
              <p><span class="icon" style="color: #e0470d;"><i class="fa fa-file-text-o"></i></span> A New Approach to Development of Recommendation Systems with Opinion Mining on Turkish User Reviews</p>
                <li>Energy demand and supply optimization</li>
+
               <p class="is-small">Tayfun Yalçınkaya, Kadir Has University<br>Hasan Dağ, Kadir Has University</p>
                <li>Customer behavior prediction</li>
 
                <li>Sentiment analysis</li>
 
                <li>Convolutional neural networks</li>
 
                <li>Recurrent neural networks</li>
 
                <li>Recursive neural networks</li>
 
               </ul>
 
 
             </div>
 
             </div>
 
           </div>
 
           </div>

Latest revision as of 03:33, 14 September 2018

Track

Data Mining and Machine/Deep Learning

Track Chair

Prof. Dr. Hasan Dağ, Kadir Has University

Data science expresses that previous data processing applications are not sufficient to process larger and more complex data sets. The relatively recent concepts of data mining, machine learning, and deep learning offer a new set of techniques and methods. Today, researchers and companies are dealing with and experimenting with various methods of deriving value, such as machine learning, data mining, artificial intelligence, and deep learning. Data Mining and Machine / Deep Learning track aims to contribute to fields that are related to analytics of data that based on different data types. New approaches, applications, models or methods related to the topic of this track.

Prof. Dr. Hasan Dağ obtained his bachelor degree in electrical engineering from Istanbul Technical University, Istanbul, Turkey and obtained both his master and PhD degrees both in University of Wisconsin-Madison in electrical and Computer Engineering. His area of interest in general is computational science, data science and smart grid. His recent research areas are Data Science, Big Data, Cyber Security, and their application to Smart Grid. He holds the directorate position of research resources, while at the same time holding the position of the head of Management Information System at Kadir Has University, Istanbul, Turkey. He has also been appointed the directorate position of Research Center for Cyber Security and Critical Infrastructures.

Unsorted

Evaluation of Call Center Efficiency Using Text Mining Approach

Eda Üzüm, Boğaziçi University
Seren Başaran, Boğaziçi University
Sona Mardikyan, Boğaziçi University

Veri Madenciliği Üzerine Endüstriyel Bir Durum Çalışması

Buse Türkoğlu, Norm Civata
Murat Komesli, Yaşar University
Mehmet Süleyman Ünlütürk, Yaşar University

Balıkçılık Endüstrisinde Kullanılan Büyüme Modellerinde Geleneksel Yaklaşımlar ile Yapay Sinir Ağlarının Yaklaşımlarının Karşılaştırılması

Recep Benzer, National Defense University
Semra Benzer, Gazi University

Integration of the Google Analytics tool into the data pre-processing layer for WEB Usage Mining: A case study

Şükrü Can Şayan, Gazi University
Tahsin Çetinyokuş, Gazi University

Siğil Tedavisinde Kullanılan Immunotherapy Yönteminin Uygunluğunun Bayes Yöntemi ile Tespiti

Sümeyye Çelik, Burdur Mehmet Akif Ersoy University
Melike Şişeci Çeşmeli, Burdur Mehmet Akif Ersoy University
İhsan Pençe, Burdur Mehmet Akif Ersoy University
Adnan Kalkan, Burdur Mehmet Akif Ersoy University

Predicting Diffusion Reach Probabilities via Representation Learning on Social Networks

Furkan Gürsoy, Boğaziçi University
Ahmet Onur Durahim, Boğaziçi University

Finding a Model that Provides High Profits with Web Usage Mining: A Case Study

Şükrü Can Şayan, Gazi University
Tahsin Çetinyokuş, Gazi University

Derin Öğrenme ile Görüntü Kümeleme

Ömer Faruk Akmeşe, Hitit University

K-Means vs. Fuzzy C-Means: A Comparative Analysis of Two Popular Clustering Techniques on the Featured Mobile Applications Benchmark

Tuğrul Cabir Hakyemez, Sakarya University
Aysun Bozanta, Boğaziçi University
Mustafa Coşkun, Boğaziçi University

A New Approach to Development of Recommendation Systems with Opinion Mining on Turkish User Reviews

Tayfun Yalçınkaya, Kadir Has University
Hasan Dağ, Kadir Has University