Difference between revisions of "Track: DMM"

Line 1: Line 1:
 
<html>
 
<html>
<!-- <div class="langx is-pulled-right"><a class="button is-small" href="/index.php?title=Konferansın_Yeri">Turkish</a></div> -->
 
 
     <section class="section tot">
 
     <section class="section tot">
 
       <div class="container">
 
       <div class="container">
 
         <div class="content">
 
         <div class="content">
 
           <div class="columns">
 
           <div class="columns">
             <div class="column is-7">
+
             <div class="column is-three-fifths is-offset-one-fifth">
               <p class="title is-3">Track</p>
+
               <p class="is-small is-uppercase has-text-weight-bold" style="color: #e0470d;">Track</p>
               <p class="subtitle is-4">Data Mining and Machine/Deep Learning</p><br>
+
               <p class="title is-3">Data Mining and Machine/Deep Learning</p>
               <p class="title is-3">Track Chair</p>
+
               <p class="is-small is-uppercase has-text-weight-bold" style="color: #e0470d;">Track Chair</p>
               <p class="subtitle is-4">Dr. H. Dağ<br><span class="has-text-weight-light is-size-5">Kadir Has University</span></p>
+
               <p class="subtitle is-5">Prof. Dr. Hasan Dağ, Kadir Has University</p>
 +
            </div>
 
           </div>
 
           </div>
             <div class="column is-1">
+
  <div class="is-divider" data-content="Introduction"></div>
 +
          <div class="columns">
 +
             <div class="column is-three-fifths is-offset-one-fifth">
 +
              <p>Data science expresses that previous data processing applications are not sufficient to process larger and more complex data sets. The relatively recent concepts of data mining, machine learning, and deep learning offer a new set of techniques and methods. Today, researchers and companies are dealing with and experimenting with various methods of deriving value, such as machine learning, data mining, artificial intelligence, and deep learning. Data Mining and Machine / Deep Learning track aims to contribute to fields that are related to analytics of data that based on different data types. New approaches, applications, models or methods related to the topic of this track.</p>
 
             </div>
 
             </div>
            <div class="column is-4">
+
          </div>
              <p class="subtitle is-5"><strong>Language of the Track</strong></p>
+
  <div class="is-divider" data-content="Biography of the Chair"></div>
              <p>English</p>
+
          <div class="columns">
              <p>&nbsp;</p>
+
            <div class="column is-three-fifths is-offset-one-fifth">
              <p><a class="button is-link is-medium" href="/index.php?title=Submission"><strong><span class="icon"><i class="fa fa-send"></i></span> &nbsp;&nbsp;Submit your paper</strong></a></p>
+
               <p>Prof. Dr. Hasan Dağ obtained his bachelor degree in electrical engineering from Istanbul Technical University, Istanbul, Turkey and obtained both his master and PhD degrees both in University of Wisconsin-Madison in electrical and Computer Engineering. His area of interest in general is computational science, data science and smart grid. His recent research areas are Data Science, Big Data, Cyber Security, and their application to Smart Grid. He holds the directorate position of research resources, while at the same time holding the position of the head of Management Information System at Kadir Has University, Istanbul, Turkey. He has also been appointed the directorate position of Research Center for Cyber Security and Critical Infrastructures.</p>
               <p><a href="/index.php?title=Conference_Tracks"><strong>List of Confirmed Track Proposals</strong></a></p>
 
 
             </div>
 
             </div>
        </div>
+
          </div>
      </div>
+
  <div class="is-divider" data-content="Papers"></div>
    </section>
 
    <section class="section tot">
 
      <div class="container">
 
        <div class="content">
 
 
           <div class="columns">
 
           <div class="columns">
             <div class="column is-7">
+
             <div class="column is-three-fifths is-offset-one-fifth">
               <p class="title is-3">Call for Papers</p>
+
               <p class="is-small has-text-grey">Unsorted</p>
              <p>Data science expresses that previous data processing applications are not sufficient to process larger and more complex data sets. The relatively recent concepts of data mining, machine learning, and deep learning offer a new set of techniques and methods. Today, researchers and companies are dealing with and experimenting with various methods of deriving value, such as machine learning, data mining, artificial intelligence, and deep learning. <strong>Data Mining and Machine / Deep Learning</strong> track aims to contribute to fields that are related to analytics of data that based on different data types. New approaches, applications, models or methods related to the topic of this track are encouraged to apply to the track.</p>
+
<!-- 17 -->
              <p>Dr. Hasan Dağ, Kadir Has University</p>
+
               <p><span class="icon" style="color: #e0470d;"><i class="fa fa-file-text-o"></i></span> </p>
               <p><span class="icon"><i class="fa fa-envelope"></i></span> <a href="mailto:hasan.dag@khas.edu.tr"><strong>hasan.dag@khas.edu.tr</strong></a></p>
+
               <p class="is-small"></p>
<br>
+
<!-- 37 -->
               <p class="title is-3"><strong>Biography of the Chair</strong></p>
+
<!-- 39 -->
              <p><strong>Dr. Dağ</strong> obtained his bachelor degree in electrical engineering from Istanbul Technical University, Istanbul, Turkey and obtained both his master and PhD degrees both in University of Wisconsin-Madison in electrical and Computer Engineering. His area of interest in general is computational science, data science and smart grid. His recent research areas are Data Science, Big Data, Cyber Security, and their application to Smart Grid. He holds the directorate position of research resources, while at the same time holding the position of the head of Management Information System at Kadir Has University, Istanbul, Turkey. He has also been appointed the directorate position of Research Center for Cyber Security and Critical Infrastructures.</p>
+
<!-- 42 -->
 
+
<!-- 61 -->
            </div>
+
<!-- 63 -->
            <div class="column is-1">
+
<!-- 69 -->
            </div>
+
<!-- 79 -->
            <div class="column is-4">
+
<!-- 107 -->
<!--             <p>
+
<!-- 116 -->
                <figure class="image" style="margin: 0;">
 
                  <img src="http://2018.imisc.net/images/2/29/Track.jpg" alt="Image">
 
                </figure>
 
              </p> -->
 
              <p class="subtitle is-5"><strong>Key Topics</strong></p>
 
              <p>We welcome papers related to the following topics (but not limited to):</p>
 
              <ul>
 
                <li>Demand forecasting</li>
 
                <li>Process optimization</li>
 
                <li>Predictive maintenance or condition monitoring</li>
 
                <li>Recommendation engines</li>
 
                <li>Market segmentation and targeting</li>
 
                <li>Disease identification and risk stratification</li>
 
                <li>Dynamic pricing</li>
 
                <li>Social media-consumer feedback and interaction analysis</li>
 
                <li>Traffic patterns and congestion management</li>
 
                <li>Power usage analytics</li>
 
                <li>Energy demand and supply optimization</li>
 
                <li>Customer behavior prediction</li>
 
                <li>Sentiment analysis</li>
 
                <li>Convolutional neural networks</li>
 
                <li>Recurrent neural networks</li>
 
                <li>Recursive neural networks</li>
 
              </ul>
 
 
             </div>
 
             </div>
 
           </div>
 
           </div>

Revision as of 18:13, 13 September 2018

Track

Data Mining and Machine/Deep Learning

Track Chair

Prof. Dr. Hasan Dağ, Kadir Has University

Data science expresses that previous data processing applications are not sufficient to process larger and more complex data sets. The relatively recent concepts of data mining, machine learning, and deep learning offer a new set of techniques and methods. Today, researchers and companies are dealing with and experimenting with various methods of deriving value, such as machine learning, data mining, artificial intelligence, and deep learning. Data Mining and Machine / Deep Learning track aims to contribute to fields that are related to analytics of data that based on different data types. New approaches, applications, models or methods related to the topic of this track.

Prof. Dr. Hasan Dağ obtained his bachelor degree in electrical engineering from Istanbul Technical University, Istanbul, Turkey and obtained both his master and PhD degrees both in University of Wisconsin-Madison in electrical and Computer Engineering. His area of interest in general is computational science, data science and smart grid. His recent research areas are Data Science, Big Data, Cyber Security, and their application to Smart Grid. He holds the directorate position of research resources, while at the same time holding the position of the head of Management Information System at Kadir Has University, Istanbul, Turkey. He has also been appointed the directorate position of Research Center for Cyber Security and Critical Infrastructures.

Unsorted